Direction derivative of f(X,y) at (0,0) in the direction of "\\vec{u} = (u_1,u_2)" is
"f'((0,0),(u_1,u_2)) = \\lim_{t\\to 0} \\frac{f((0,0)+t(u_1,u_2))-f(0,0)}{t} = \\lim_{t\\to 0} \\frac{f(tu_1,tu_2)}{t}"
"=\\lim_{t\\to 0} \\frac{1}{t} \\frac{t^5 u_1^2 u_2^3}{t^4u_1^2+t^2u_2^2}=\\lim_{t\\to 0} \\frac{t^2 u_1^2 u_2^3}{t^2u_1^2+u_2^2}=0"
Comments
Leave a comment