let us start with, "\\lim_{m \\to \\infty} {x_m} = (x_1,x_2,x_3, . . . . . . . . . , x_m)" = {x}
for "\\epsilon > 0," "n_0 \\isin \\N" such that
"|| {x_n} - {x} || < \\epsilon" for "\\forall" "n \\geq n_0"
so "n \\geq n_0\n\u200b" , we can say that
"||(x_{1m},x_{2m}, x_{3m}, . . . . . . . . . ,x_{nm}) - ( x_1,x_2,x_3,......,x_n )|| < \\epsilon"
"|| (x_{1m}-x_1),(x_{2m}-x_2),.....(x_{nm}-x_n)|| < \\epsilon"
"\\sqrt { (x_{1m}-x_1)^2+(x_{2m}-x_2)^2+.....(x_{nm}-x_n)^2} < \\epsilon"
"\\sqrt{{(x_{im} - x_i)}^2} < \\epsilon"
"||{(x_{im} - x_i)} ||< \\epsilon"
"\\lim_{x \\to \\infty} {x_{im}} = x_i"
Conversely, assume that "\\lim_{x \\to \\infty} {x_{im}} = x_i"
since, for "\\epsilon > 0," "\\exists" "n_{0i} \\isin \\N" such that
"|| x_{im} - x_i|| < \\epsilon" for every value of "n > n_{0i}" (1)
for each "i=0,1,2,3,4,. .......,n"
Consider the maximum of "(x_{01},x_{02},........,x_{0n})"
then (1) will hold true simultaneously for each i.
"|| x_{im} - x_i || < \\epsilon" "\\forall" "n\\geq n_{0i}|_{max}"
"(x_{im}-x_i)^2 < \\epsilon^2" for each i, "n\\geq n_{0i}|_{max}"
"(x_{1m}-x_1)^2+(x_{2m}-x_2)^2+......+(x_{nm}-x_n)^2 < n\\epsilon^2"
"|| x_m - x || < \\sqrt{n}\\epsilon" for each values of i, "n\\geq n_{0i}|_{max}"
"\\lim_{m \\to \\infty} {x_m} =" {x}
Hence proved
Comments
Leave a comment