1)False
Let "A=\\left\\{-\\frac{1}{n}\\bigl | n\\in\\mathbb{N}\\right\\}", then "\\sup A=0", but "a<0" for every "a\\in A"
2)True
"\\lim\\limits_{n\\to\\infty}a_n=L\\Leftrightarrow\\forall\\varepsilon>0 \\ \\exists N\\in\\mathbb{N} \\ \\forall n>N \\ |a_n-L|<\\varepsilon"
"\\lim\\limits_{n\\to\\infty}|a_n-L|=0\\Leftrightarrow\\forall\\varepsilon>0 \\ \\exists N\\in\\mathbb{N} \\ \\forall n>N \\ \\left||a_n-L|-0\\right|<\\varepsilon"
Rightsides of the first and the second statements are equivalent, so leftsides of the statements are equivalent.
Comments
Leave a comment