Remember that
y= f(x) is uniformly continuous on ]-1,1] if "\\forall \\epsilon >0 \\forall x,y \\in ]-1,1] \\vert x-y\\vert< \\delta \\Rightarrow \\vert f(x)-f(y)\\vert< \\epsilon" .
If "\\forall x,y \\in ]-1,1]" :
"|x^3 - y^3| = |(x - y) ( x^2 + yx + y^2)|= \\\\=|x - y| | x^2 + yx + y^2| \\leq\\\\\\leq |x - y|( x^2 + | yx| + y^2) <\\delta |1+1+1| =3\\delta"
Proof.
Let "\\epsilon >0 ." Choose "\\delta= \\frac{\\epsilon}{3}" .
Then "\\forall x,y \\in ]-1,1]" with "\\vert x-y\\vert< \\delta" we have
"|x^3 - y^3| = |(x - y) ( x^2 + yx + y^2)|= \\\\=|x - y| | x^2 + yx + y^2| \\leq \\\\ \\leq |x - y|( x^2 + | yx| + y^2) <\\delta |1+1+1| =3\\delta=3\\frac{\\epsilon}{3}=\\epsilon\\\\" .
If "\\vert x-y\\vert< \\delta" :"|x^3 - y^3| <\\epsilon" .
So
"f(x)=x^3" is uniformy continuous on ]-1,1] .
Since f(x) is uniformy continuous ]-1,1] then it is continuous at the point zero (x=0).
Comments
Leave a comment