We have-
"\\mathbf{r(t)=e^{12t}cos(t)\\;i+e^{12t}sin(t)\\;j+e^{12t}\\;k}"
"\\mathbf{ \\therefore \\;v(t)=r'(t)=(12e^{12t}cos(t)+e^{12t}(-sin(t)))\\;i}"
"\\mathbf{+(12e^{12t}sin(t)+e^{12t}cos(t))\\;j+12e^{12t}\\; k}"
"\\implies \\mathbf{r'(t)=e^{12t}[(12cos(t)-sin(t))\\;i+(12sin(t)+cos(t))\\;j}"
"\\mathbf{+12\\;k]}"
and "\\mathbf{\\mid\\mid v(t) \\mid\\mid=\\sqrt{e^{24t}[(144.cos^2(t)+sin^2(t)-24.cos(t)sin(t))+}}"
"\\mathbf{\\sqrt{\\\\ \n \\\\+(144.sin^2(t)+cos^2(t)+24.cos(t)sin(t))+144]}}"
"\\mathbf{\\implies \\mid\\mid v(t) \\mid\\mid=e^{12t}\\sqrt{144(cos^2(t)+sin^2(t))+(cos^2(t)+sin^2(t))+144}}"
"\\mathbf{\\implies \\mid\\mid v(t) \\mid\\mid=e^{12t}\\sqrt{144+1+144}=e^{12t}\\sqrt{289}=17e^{12t}}"
To find the unit tangent vector, we just divide
"\\mathbf{T(t)=\\dfrac{v(t)}{||v(t)||}=\\dfrac{e^{12t}[(12cos(t)-sin(t))\\;i+(12sin(t)+cos(t))\\;j+12\\;k]}{17e^{12t}}}"
"\\mathbf{=\\dfrac{[(12cos(t)-sin(t))\\;i+(12sin(t)+cos(t))\\;j+12\\;k]}{17}}"
To find T(pi/2), plug in (pi/2) to get-
"\\mathbf{T(\\pi\/2)=\\dfrac{[(12cos(\\pi\/2)-sin(\\pi\/2))\\;i+(12sin(\\pi\/2)+cos(\\pi\/2))\\;j+12\\;k]}{17}}"
"\\mathbf{=\\dfrac{(0-1)\\;i+(12+0)\\;j+12\\;k}{17}=\\dfrac{-\\;i+12\\;j+12\\;k}{17}}"
"\\mathbf{\\implies T(\\pi\/2)=\\bigg(\\dfrac{-1}{17}\\bigg)i+\\bigg(\\dfrac{12}{17}\\bigg)j+\\bigg(\\dfrac{12}{17}\\bigg)k}" ....................Ans.
Comments
Leave a comment