"\\vec{r}(t) = \\lbrace 2\\sin t, 5t, 2\\cos t \\rbrace."
Let us take derivatives with respect to t:
"\\vec{r}'(t) = \\lbrace 2\\cos t, 5, -2\\sin t \\rbrace, \\;\\; \\vec{r}''(t) = \\lbrace -2\\sin t, 0, -2\\cos t \\rbrace."
The tangent is "\\vec{\\tau}(t) = \\vec{r}'(t) = \\lbrace 2\\cos t, 5, -2\\sin t \\rbrace." We should normalize this vector (norm is "\\sqrt{4\\cos^2t + 25 + 4\\sin^2t} = \\sqrt{29}" ), so the unit tangent is "\\vec{T} =\\left \\lbrace \\dfrac{2\\cos t}{\\sqrt{29}}, \\dfrac{5}{\\sqrt{29}}, \\dfrac{-2\\sin t}{\\sqrt{29}} \\right\\rbrace" .
The normal is "\\vec{\\beta}(t) = \\vec{r}'(t)\\times (\\vec{r}'(t)\\times\\vec{r}''(t) ) ."
"\\vec{r}'(t)\\times\\vec{r}''(t) = \\begin{vmatrix}\n\\vec{i} & \\vec{j} & \\vec{k} \\\\\n 2\\cos t & 5 & -2\\sin t \\\\\n-2\\sin t & 0 & -2\\cos t\n \\end{vmatrix}\n = \\lbrace -10\\cos t, 4 , 10\\sin t \\rbrace ."
"\\vec{r}'(t)\\times (\\vec{r}'(t)\\times\\vec{r}''(t) ) = \\begin{vmatrix}\n \\vec{i} & \\vec{j} & \\vec{k} \\\\\n 2\\cos t & 5 & -2\\sin t \\\\\n -10\\cos t & 4 & 10\\sin t\n\\end{vmatrix} = \\lbrace 58\\cos t, 0, 58\\sin t \\rbrace."
The unit normal is "\\vec{N} = \\lbrace \\cos t, 0, \\sin t \\rbrace."
The curvature is "k = \\dfrac{||\\vec{r}'(t)\\times\\vec{r}''(t)||}{||\\vec{r}'(t)||^3} = \\dfrac{\\sqrt{116}}{\\sqrt{29}^3} = \\dfrac{2}{29}."
Comments
Leave a comment