"\\sigma_u=(f' cos \\ v, f' sin \\ v, g' )," "\\sigma_v=(-f sin \\ v, f cos \\ v, 0 )," "\\sigma_{uu}=(f'' cos \\ v, f'' sin \\ v, g'' )," "\\sigma_{vv}=(-f cos \\ v, f sin \\ v, 0 )." We note "\\sigma_u\\cdot\\sigma_v=0." "\\hat{n}=\\frac{\\sigma_u\\times\\sigma_v}{||\\sigma_u\\times\\sigma_v||}=" "\\hat{n}=\\frac{(fg'cos \\ v , -fg' sin \\ v ,ff')}{\\sqrt{g'^2 f^2+f'^2f^2}}." Hence "\\sigma_{uu}\\cdot \\hat{n}=-\\frac{f}{|f|}\\frac{g''f'-g'f''}{\\sqrt{g'^2+f'^2}}" , "\\sigma_{vv}\\cdot \\hat{n}= -\\frac{|f|g'}{\\sqrt{g'^2+f'^2}}." Hence, we get, that the principal curvatures are "\\frac{\\sigma_{uu}\\cdot \\hat{n}}{\\sigma_u\\cdot\\sigma_u}=-\\frac{f}{|f|}\\frac{g''f'-g'f''}{(g'^2+f'^2)^{3\/2}}" and "\\frac{\\sigma_{vv}\\cdot \\hat{n}}{\\sigma_v\\cdot\\sigma_v}=-\\frac{g'}{|f|\\sqrt{g'^2+f'^2}}" .
Hence the Gaussian curvature is product of the two= "\\frac{1}{f}\\frac{g'(g''f'-g'f'')}{(g'^2+f'^2)^{2}}" and mean curvature = mean of the two= "\\frac{f(-g''f'+g'f'')-g'(g'^2+f'^2)}{2|f|(g'^2+f'^2)^{3\/2}}"
Comments
Leave a comment