"I = dS^2=a_{11}(du^1)^2+2a_{12}du^1du^2+a_{22}(du^2)^2\\\\\na_{ij}=(\\overline{r_i}, \\overline{r_j}); i,j=1,2\\\\\nII=b_{11}(du^1)^2+2b_{12}du^1du^2+b_{22}(du^2)^2\\\\\nb_{ij}=(\\overline{r_{ij}},\\overline{n}); i,j=1,2\\\\\nIII=d\\overline{n}^2=(\\overline{n_{u^1}})^2(du^1)^2+2\\overline{n_{u^1}}\\overline{n_{u^2}}du^1du^2+(\\overline{n_{u^2}})^2(du^2)^2\\\\\n\\begin{pmatrix}\n (\\overline{n_{u^1}})^2 & \\overline{n_{u^1}}\\overline{n_{u^2}} \\\\\n \\overline{n_{u^1}}\\overline{n_{u^2}} & (\\overline{n_{u^2}})^2 \n\\end{pmatrix}\n-2H\n\\begin{pmatrix}\n b_{11} & b_{12} \\\\\n b_{12} & b_{22} \n\\end{pmatrix}\n+K\n\\begin{pmatrix}\n a_{11} & a_{12} \\\\\n a_{12} & a_{22} \n\\end{pmatrix}\n=0\\\\\nH=\\frac{1}{2}(k_1+k_2)\\text{ --- mean curvature}\\\\\n2H=k_1+k_2=\\frac{a_{11}b_{22}+a_{22}b_{11}-2a_{12}b_{12}}{a_{11}a_{22}-a_{12}^2}\\\\\nK=k_1\\cdot k_2=\\frac{b_{11}b_{22}-b_{12}^2}{a_{11}a_{22}-a_{12}^2}\\text{ --- Gaussian curvature}"
Comments
Leave a comment