At any point of the path x=3cosâ¡t,y=3sinâ¡t,z=4t, find the Tangent vector . n
"\\vec{r'}(t)=(-3\\sin t, 3\\cos t, 4)"
"|\\vec{r'}(t)|=\\sqrt{(-3\\sin t)^2+(3\\cos t)^2+(4)^2}=5"
"|\\vec{T}(t)|=\\sqrt{(-\\dfrac{3}{5}\\sin t)^2+(\\dfrac{3}{5}\\cos t)^2+(\\dfrac{4}{5})^2}=1"
"\\vec{T'}(t)=(-\\dfrac{3}{5}\\cos t, -\\dfrac{3}{5}\\sin t, 0)"
"|\\vec{T'}(t)|=\\sqrt{(-\\dfrac{3}{5}\\cos t)^2+(-\\dfrac{3}{5}\\sin t)^2+(0)^2}=\\dfrac{3}{5}"
"\\vec{N}(t)=(-\\cos t, -\\sin t, 0)"
Comments
Leave a comment