Suppose that \\( \\alpha=2i-3j+k\\) and \\(\\beta=7i-5j+k\\) , find a unit vector perpendicular to \\(\\alpha\\) and \\(\\beta) respectively.
"\\alpha = 2i-3j+k \\\\\n\\beta = 7i-5j+k"
Let "d = \\alpha \\times \\beta"
Consider the computation
"d= \\begin{vmatrix} i&j&k\\\\ 2&-3&1\\\\7&-5&1\n\\end{vmatrix} = (-3+5)i -(2-7)j +(-10+21)k = 2i+5j+11k"
Let c be the unit vector of d."c= \\dfrac{2i+5j+11k}{\\sqrt{(2)^2+(5)^2+(11)^2}} = \\dfrac{2i+5j+11k}{\\sqrt{150}} = \\dfrac{2i+5j+11k}{5\\sqrt{6}}"
We claim that c is the desired unit vector perpendicular to "\\alpha" and "\\beta" . To see this consider
"c \\cdot \\alpha = \\frac{1}{5\\sqrt6}(2i+5j+11k) \\cdot (2i-3j+k) = \\frac{1}{5\\sqrt6} (4-15+11) = 0"
Also, consider
"c \\cdot \\beta = \\frac{1}{5\\sqrt6}(2i+5j+11k) \\cdot (7i-5j+k) = \\frac{1}{5\\sqrt6} (14-25+11) = 0"
Comments
Leave a comment