To find the radius of curvature of the curve given in the form "y = y({x_0})" at some point "({x_0},y({x_0})) = ({x_0},{y_0})" we can use the following formula
"R({x_0}) = \\frac{{{{[1 + {{(y'({x_0}))}^2}]}^{3\/2}}}}{{\\left| {y''({x_0})} \\right|}}"
To find the derivatives we can use the method of implicit differentiation. Let's write the equation of the curve
"{x^3} + {y^3} - 3axy = 0"
and differentiate both halves
"3{x^2} + 3{y^2}y' - 3ay - 3axy' = 0"group the terms
"3({y^2} - ax)y' + 3{x^2} - 3ay = 0"
and expressing "y'"
"y' = \\frac{{3ay - 3{x^2}}}{{3({y^2} - ax)}} = \\frac{{ay - {x^2}}}{{{y^2} - ax}}"Remembering this result return to the expression
"3{x^2} + 3{y^2}y' - 3ay - 3axy' = 0" Differentiate it once again
"6x + 6y{(y')^2} + 3{y^2}y'' - 3ay' - 3ay' - 3axy'' = 0" group the terms
"3({y^2} - ax)y'' + 6(x + y{(y')^2} - ay') = 0"
"y'' = 2\\frac{{ay' - y{{(y')}^2} - x}}{{{y^2} - ax}}"Now we can do all calculations using "x = {x_0} = 3a" and "y = {y_0} = 3a" . Let's begin with the first derivative.
"y'({x_0}) = \\frac{{a{y_0} - x_0^2}}{{y_0^2 - a{x_0}}} = \\frac{{3{a^2} - 9{a^2}}}{{9{a^2} - 3{a^2}}} = - 1" And with the second derivative, using the value of the first
"y''({x_0}) = 2\\frac{{ay'({x_0}) - {y_0}{{(y'({x_0}))}^2} - {x_0}}}{{y_0^2 - a{x_0}}} = 2\\frac{{ - a - 3a - 3a}}{{9{a^2} - 3{a^2}}} = - 2\\frac{{7a}}{{6{a^2}}} = - \\frac{7}{{3a}}" At least we can use the formula for the radius of curvature
"R({x_0}) = \\frac{{{{[1 + {{(y'({x_0}))}^2}]}^{3\/2}}}}{{\\left| {y''({x_0})} \\right|}} = \\frac{{{{(1 + 1)}^{3\/2}}}}{{\\frac{7}{{3\\left| a \\right|}}}} = \\frac{{3\\left| a \\right|}}{7} \\cdot {2^{3\/2}} = 2\\sqrt 2 \\frac{{3\\left| a \\right|}}{7} = \\frac{{6\\sqrt 2 }}{7}\\left| a \\right|" This is the answer
Comments
Leave a comment