A particle P moves on the curve with polar equation r = 1/ (2 - sinx) . Given that at any instant t, during the motion, r^2 (dx/dt) = 4,
(i) write an expression for r(dx/dt) in terms of x.
(ii) Show that dr/dt = 4cosx and 1/3 <=r<=1.
(iii) Find the speed of P when x = 0.
(iv) Prove that the force acting on P is directed towards the pole.
Calculate the normal and the geodesic curvatures of the following curves on
the given surfaces:
(b) The right circular helix γ(θ) = (a cos θ, a sin θ, bθ) on the right circular cylinder
σ(u, v) = (a cos u, a sin u, v), where a, b > 0 are constants.
The third fundamental form of a surface σ(u, v) is
||N̂u|| ^2 du^2 + 2N̂u.N̂v dudv + ||N̂v||^2 dv^2
where N̂ (u, v) is the standard unit normal to σ(u, v). Let FIII be the associated 2 × 2
symmetric matrix.
Show that FIII = FIIF^−1I FII , where FI and FII are the 2 × 2 symmetric matrices
associated with the first and the second fundamental forms, respectively
Calculate the normal and the geodesic curvatures of the following curves on
the given surfaces:
(b) The right circular helix γ(θ) = (a cos θ, a sin θ, bθ) on the right circular cylinder
σ(u, v) = (a cos u, a sin u, v), where a, b > 0 are constants.
Numbers and figures are an essential part of our world, necessary for almost everything we do every day. As important…
APPROVED BY CLIENTS
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!