From the introductions to First and second fundamental forms (https://warwick.ac.uk/fac/sci/maths/people/staff/weiyi_zhang/ma3d92018fall.pdf)
We prefer "E,F, and\\ G" to the first fundamental form and "L,M,N" to the second fundamental form, hence;
We denote
From the above concept, we deduced the first, second and third fundamental forms replacing "Edu^2+ 2Fdudv+Gdv^2" with "a_{11}(du^1)^2+2a_{12}du^1du^2+a_{22}(du^2)^2" , "II=Ldu^2+ 2Mdudv+Ndv^2" with "b_{11}(du^1)^2+2b_{12}du^1du^2+b_{22}(du^2)^2" and used "d\\overline{n}^2=(\\overline{n_{u^1}})^2(du^1)^2+2\\overline{n_{u^1}}\\overline{n_{u^2}}du^1du^2+(\\overline{n_{u^2}})^2(du^2)^2" for the third fundamental form
"I = dS^2=a_{11}(du^1)^2+2a_{12}du^1du^2+a_{22}(du^2)^2\\\\\na_{ij}=(\\overline{r_i}, \\overline{r_j}); i,j=1,2\\\\\nII=b_{11}(du^1)^2+2b_{12}du^1du^2+b_{22}(du^2)^2\\\\\nb_{ij}=(\\overline{r_{ij}},\\overline{n}); i,j=1,2\\\\\nIII=d\\overline{n}^2=(\\overline{n_{u^1}})^2(du^1)^2+2\\overline{n_{u^1}}\\overline{n_{u^2}}du^1du^2+(\\overline{n_{u^2}})^2(du^2)^2\\\\\n\\begin{pmatrix}\n (\\overline{n_{u^1}})^2 & \\overline{n_{u^1}}\\overline{n_{u^2}} \\\\\n \\overline{n_{u^1}}\\overline{n_{u^2}} & (\\overline{n_{u^2}})^2 \n\\end{pmatrix}\n= \n\\begin{pmatrix}\n b_{11} & b_{12} \\\\\n b_{12} & b_{22} \n\\end{pmatrix}\n\\cdot\n\\begin{pmatrix}\n a_{11} & a_{12} \\\\\n a_{12} & a_{22}\n\\end{pmatrix}^{-1}\n\\cdot\n\\begin{pmatrix}\n b_{11} & b_{12} \\\\\n b_{12} & b_{22} \n\\end{pmatrix}\\\\\nA=\\begin{pmatrix}\n a_{11} & a_{12} \\\\\n a_{12} & a_{22}\n\\end{pmatrix}\\\\\nA^{-1}=\\begin{pmatrix}\n \\frac{a_{22}}{\\Delta} & -\\frac{a_{12}}{\\Delta} \\\\\n -\\frac{a_{12}}{\\Delta} & \\frac{a_{11}}{\\Delta}\n\\end{pmatrix}\\\\\n\\Delta=|A|=a_{11}a_{22}-a_{12}^2"
Comments
Leave a comment