Calculate the first fundamental form, the second fundamental form, and the
Weingarten matrix of the following surface patches of the unit sphere:
(a) σ(θ, φ) = (cos θ cos φ, cos θ sin φ,sin θ).
(b) σ(u, v) = (sech u cos v,sech u sin v,tanh u).
For the parametric surface "r(u,v)" the first fundamental form is (see http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node28.html):
"I=ds^2=Edu^2+2Fdudv+Gdv^2," where "E=(r_u,r_u), F=(r_u,r_v)," "G=(r_v,r_v)" .
The second fundamental form is: "II=Ldu^2+2Mdudv+Ndv^2" , where: "L=-(r_u,\\text{N}_u),M=-(r_v,\\text{N}_u),N=-(r_v,\\text{N}_v)" .
The normal vector is: "\\text{N}=r_u\\times r_v=\\begin{vmatrix}\n i & j& k \\\\\n (r_u)_1 & (r_u)_2& (r_u)_3\\\\\n(r_v)_1 & (r_v)_2& (r_v)_3\n\\end{vmatrix}" , where by "()_j" we denoted the respective coordinates of the vectors.
NOTE: The Weingarten matrix is the matrix of the shape operator of surface s with respect to variables u and v.
It is given by"\\begin{pmatrix}\n \\frac{MF-LG}{EG-F^2} & \\frac{LF-ME}{EG-F^2} \\\\\n \\frac{NF-MG}{EG-F^2} & \\frac{MF-NE}{EG-F^2}\n\\end{pmatrix}"
a). "r_{\\theta}=(-sin\\,\\theta\\,cos\\varphi,-sin\\,\\theta\\,sin\\varphi,cos\\,\\theta),"
"r_{\\varphi}=(-cos\\,\\theta\\,sin\\varphi,cos\\,\\theta\\,cos\\varphi,0),"
"E=(r_{\\theta},r_{\\theta})=sin^2\\theta\\,cos^2\\,\\varphi+sin^2\\theta\\,sin^2\\,\\varphi+cos^2\\theta=1" ,
"F=(r_{\\theta},r_{\\varphi})=sin\\,\\theta\\,\\,cos\\,\\theta\\,cos\\varphi\\, sin\\varphi-sin\\,\\theta\\,\\,cos\\,\\theta\\,cos\\varphi\\, sin\\varphi=0,"
"G=(r_{\\varphi},r_{\\varphi})=cos^2\\,\\theta\\,sin^2\\varphi+cos^2\\,\\theta\\,cos^2\\varphi=cos^2\\,\\theta."
"I=d\\theta+cos^2\\theta\\,d\\varphi" .
"\\text{N}=\\begin{vmatrix}\n i & j &k \\\\\n -sin\\,\\theta\\,cos\\varphi&-sin\\,\\theta\\,sin\\varphi&cos\\,\\theta\\\\\n-cos\\,\\theta\\,sin\\varphi&cos\\,\\theta\\,cos\\varphi&0\n\\end{vmatrix}=i\\begin{vmatrix}\n -sin\\,\\theta\\,sin\\varphi&cos\\,\\theta\\\\\ncos\\,\\theta\\,cos\\varphi&0\n\\end{vmatrix}-j\\begin{vmatrix}\n \n -sin\\,\\theta\\,cos\\varphi&cos\\,\\theta\\\\\n-cos\\,\\theta\\,sin\\varphi&0\n\\end{vmatrix}+k\\begin{vmatrix}\n \n -sin\\,\\theta\\,cos\\varphi&-sin\\,\\theta\\,sin\\varphi\\\\\n-cos\\,\\theta\\,sin\\varphi&cos\\,\\theta\\,cos\\varphi\n\\end{vmatrix}="
"=-i\\,cos^2\\theta\\,cos\\,\\varphi-j\\,cos\\,\\theta\\,sin\\,\\varphi-ksin\\,\\theta\\,cos\\,\\theta=(-\\,cos^2\\theta\\,cos\\,\\varphi,-\\,cos\\,\\theta\\,sin\\,\\varphi,-sin\\,\\theta\\,cos\\,\\theta),"
The second fundamental form is:
"II=Ldu^2+2Mdudv+Ndv^2,"
where "L=-(r_u,\\text{N}_u),M=-(r_v,\\text{N}_u),N=-(r_v,\\text{N}_v)"
The Weingarten matrix is: "\\begin{pmatrix}\n \\frac{MF-LG}{EG-F^2} & \\frac{LF-ME}{EG-F^2} \\\\\n \\frac{NF-MG}{EG-F^2} & \\frac{MF-NE}{EG-F^2}\n\\end{pmatrix}"
b). "r_{u}=(-\\frac{sinh\\,u}{cosh^2\\,u}cos\\,v,-\\frac{sinh\\,u}{cosh^2\\,u}sin\\,v,\\frac{1}{cosh^2u}),"
"r_{v}=(-sech\\,u\\,sin\\,v,sech\\,u\\,cos\\,v,0),"
"E=(r_u,r_u)=\\frac{sinh^2\\,u}{cosh^4\\,u}cos^2\\,v+\\frac{1}{cosh^4\\,u}=\\frac{cos^2v}{cosh^2u}" ,
"F=0, G=(r_v,r_v)=\\frac{1}{cosh^2u};"
"I=\\frac{cos^2v}{cosh^2u}du+\\frac{1}{cosh^2u}dv" .
"\\text{N}=\\begin{vmatrix}\n i & j &k \\\\\n -\\frac{sinh\\,u}{cosh^2\\,u}cos\\,v&-\\frac{sinh\\,u}{cosh^2\\,u}sin\\,v&\\frac{1}{cosh^2u}\\\\\n-sech\\,u\\,sin\\,v&sech\\,u\\,cos\\,v&0\n\\end{vmatrix}=i\\begin{vmatrix}\n -\\frac{sinh\\,u}{cosh^2\\,u}sin\\,v&\\frac{1}{cosh^2u}\\\\\nsech\\,u\\,cos\\,v&0\n\\end{vmatrix}-j\\begin{vmatrix}\n -\\frac{sinh\\,u}{cosh^2\\,u}cos\\,v&\\frac{1}{cosh^2u}\\\\\n-sech\\,u\\,sin\\,v&0\n\\end{vmatrix}+k\\begin{vmatrix}\n\n -\\frac{sinh\\,u}{cosh^2\\,u}cos\\,v&-\\frac{sinh\\,u}{cosh^2\\,u}sin\\,v\\\\\n-sech\\,u\\,sin\\,v&sech\\,u\\,cos\\,v\n\\end{vmatrix}="
"\\text{N}=i\\frac{cos\\,v}{cosh^3u}+j\\frac{sin\\,v}{cosh^3u}-k\\frac{sinh\\,u}{cosh^3\\,u}" .
The second fundamental form is:
"II=Ldu^2+2Mdudv+Ndv^2,"
where "L=-(r_u,\\text{N}_u),M=-(r_v,\\text{N}_u),N=-(r_v,\\text{N}_v)."
The Weingarten Matrix is: "\\begin{pmatrix}\n \\frac{MF-LG}{EG-F^2} & \\frac{LF-ME}{EG-F^2} \\\\\n \\frac{NF-MG}{EG-F^2} & \\frac{MF-NE}{EG-F^2}\n\\end{pmatrix}" .
Comments
Leave a comment