"cos(a)=-\\frac{4}{5}"
lets find sin(a):
"sin^2(a)+cos^2(a)=1\\implies sin(a)=\\sqrt{1-cos^2(a)}"
"\\sqrt{1-(-\\frac{4}{5})^2}=\\sqrt{\\frac{9}{25}}=\\pm\\frac{3}{5}"
"\\frac{\\pi}{2}\\leq a \\leq \\pi" then "\\sin(a)=\\frac{3}{5}"
tan(a):
"tan(a)=\\frac{sin(a)}{cos(a)}=\\frac{\\frac{3}{5}}{-\\frac{4}{5}}=-\\frac{3}{4}"
using double angle formulas lets find sin(2a), cos(2a), tan(2a):
"sin(2a)=2sin(a)cos(a)=2\\cdot\\frac{3}{5}(-\\frac{4}{5})=-\\frac{24}{25}"
"cos(2a)=cos^2(a)-sin^2(a)=(-\\frac{4}{5})^2-(\\frac{3}{5})^2=\\frac{16}{25}-\\frac{9}{25}=\\frac{7}{25}"
"tan(2a)=\\frac{sin(2a)}{cos(2a)}=\\frac{-\\frac{24}{25}}{\\frac{7}{25}}=-\\frac{24}{7}"
Comments
Leave a comment