"\u03c6_A=37^{\\circ}01'" N; -the geographical latitude of position A
"\u03bb_A=9^{\\circ}00'" W; -the geographical longitude of position A
"\u03c6_B=36^{\\circ}11'" N; -the geographical latitude of position B
"\u03bb_B=6^{\\circ}02'" W; -the geographical longitude of position B
"\\Delta \u03c3=arccos(sin(\u03c6_A)sin(\u03c6_B)+"
"+cos(\u03c6_A)cos(\u03c6_B)cos(\u03bb_B-\u03bb_A))="
"=arccos(sin(37^{\\circ}01')sin(36^{\\circ}11')+"
"+cos(37^{\\circ}01')cos(36^{\\circ}11')cos(6^{\\circ}02'-9^{\\circ}00'))="
"=arccos(0.6020\\cdot 0.5904+"
"+0.7985\\cdot 0.8071\\cdot cos(-2^{\\circ}58'))="
"=arccos(0.3554+0.6445\\cdot 0.9986)="
"=arccos(0.9990)=2.52^{\\circ}" - the central angle between A and B;
the great-circle distance between two points "AB=60\\cdot2.52^{\\circ}=151.2\u202c" nautical miles,
or "AB=R\\cdot2.52^{\\circ}\\frac{\u03c0}{180^{\\circ}}=6371\\cdot0.0440=280.3" km, where R=6371 km - the mean earth radius.
"\u03b1=arccos(\\frac{sin(\u03c6_B)-sin(\u03c6_A)\\cdot cos(\\Delta \u03c3)}{cos(\u03c6_A)\\cdot sin(\\Delta \u03c3)})="
"=arccos(\\frac{sin(36^{\\circ}11')-sin(37^{\\circ}01')\\cdot cos(2.52^{\\circ})}{cos(37^{\\circ}01')\\cdot sin(2.52^{\\circ})})="
"=arccos(\\frac{ 0.5904-0.6020\\cdot 0.9990}{0.7985\\cdot 0.0439})="
"arccos(-0.3137)=108.3^{\\circ}" - bearing from point A to point B
Answer: the distance between positions is about 151.2 nautical miles (280.3 km),
course (bearing from point A to point B) is about 108.3⁰.
Comments
Leave a comment