Solution:
"from\\, similar\\, triangles, \\\\\n\\frac{x}{x+3} = \\frac{2}{6} \\\\\n6x = 2x + 6 \\\\\nx = \\frac{6}{4} \\Rightarrow \\frac{3}{2}cm \\\\\nh = \\frac{3}{2} + 3 \\Rightarrow\\frac{9}{2}cm \\\\\nby\\, pythagoras\\, theorem, \\\\\nl^2 = h^2 + 6^2 \\\\\nl^2 = (\\frac{9}{2})^2 + 6^2\\\\\nl^2 = \\frac{81}{4} + 36 =\\frac{225}{4}\\\\\n\\therefore l = \\sqrt{\\frac{225}{4}} = \\frac{15}{2}cm"
Comments
Leave a comment