Find the other angle and sides of the triangle:
QUESTION 1
Step 1: We know from the the law of sines
(a / sin A) = (b / sin B) = (c / sin C)
Therefore:
(b / sin B) = (a / sin A)
(b / sin 380)= (14 / sin 520)
b = (sin 380 x 14) / sin 520
b = 10.94 cm
Step 2: From pythogras theorem we know:
A2 + B2 = C2
142 + 10.942 = C2
315.68 = C2
C = 17.77 cm
Step 3: The interor angles of a triangle add up to 1800
900 + 380 + A = 1800
A = 1800 – 1280
A = 520
A = 14, B= 10.94, and C = 17.77
Angle <A = 520 <B = 900 <C = 380
QUESTION 2
Step 1: Given the lengths of all three sides of any triangle, each angle can be calculated using the following equations:
e = 16.3 cm
f = 13.5 cm
d = 12 cm
<D = arcCos [(e2 + f2 – d2) /(2ef)] ... (eq i)
<E = arcCos [(d2 + f2 – e2) /(2df)] ...(eq ii)
<F = arcCos [(d2 + e2 – d2) /(2de)] ...(eq iii)
Step 2: Substitute the values to the equations i, ii, and iii
<D = arcCos [(16.32 + 13.52 – 122) / (2 x 16.3 x 13.5)]
<D = 46.320
<E = arcCos [(13.52 + 122 – 16.32) /(2 x 13.5 x 12)]
< E = 79.230
<F = arcCos [(16.32 + 122 – 13.52 ) /(2 x 16.3 x 13.5)]
< F = 54.450
Therefore:
Angles <D = 46.320 <E= 79.230, and <F = 54.450
Side lengths e = 16.3 cm , f = 13.5 cm , and d = 12 cm
Comments
Leave a comment