Using cosine rule:
a² = b² + c² -2bccosA
So,
(xz)² = (xy)² + (yz)² - 2(xy)(yz)cos(XZ)
(xz)² = 30² + 55² - (2*30*55cos(130o))
(xz)² = 30² + 55² - (-2121.199)
(xz)² = 6046.199
xz = 77.76 nautical miles
Using sine rule,
(sin A/a) = (sin B/b)
So,
(sin YZ/yz) = (sin XZ/xz)
(sin thetha/55) = (sin 130/77.76)
sin thetha = (55 * sin 130)/77.76
sin thetha = 0.542
thetha = sin-1(0.542) = 32.82o
Therefore, the bearing of Z from X is 40+32.82 = 72.82o.
Comments
Leave a comment