solve the following equation for 0«x«360
a) 6 cos²x + sin x - 4
b) 9 tan x + tan²x + 5 sec² x - 3
a)"6\\cos^2 x+\\sin x-4=0"
"6(1-\\sin^2 x)+\\sin x-4=0"
"-6\\sin^2 x+\\sin x+2=0"
This quadratic equation has solutions "\\sin x=-\\frac{1}{2}" and "\\sin x=\\frac{2}{3}"
The equation "\\sin x=-\\frac{1}{2}" has solutions "210^\\circ" and "330^\\circ" in "[0^\\circ,360^\\circ]", and since "\\frac{2}{3}>0", the equation "\\sin x=\\frac{2}{3}" has solutions "\\sin^{-1}\\frac{2}{3}" and "180^\\circ-\\sin^{-1}\\frac{2}{3}" in "[0^\\circ,360^\\circ]"
b)"9\\tan x+\\tan^2 x+5\\sec^2 x-3=0"
"9\\tan x+\\tan^2 x+5(1+\\tan^2 x)-3=0"
"6\\tan^2 x+9\\tan x+2=0"
This quadratic equation has solutions "\\tan x=-\\frac{9-\\sqrt{33}}{2}" and "\\tan x=-\\frac{9+\\sqrt{33}}{2}"
Since "-\\frac{9-\\sqrt{33}}{2}<0", the equation "\\tan x=-\\frac{9-\\sqrt{33}}{2}" has solutions "360^\\circ-\\tan^{-1}\\frac{9-\\sqrt{33}}{2}" and "180^\\circ-\\tan^{-1}\\frac{9-\\sqrt{33}}{2}" in "[0^\\circ,360^\\circ]"
Similarly the equation "\\tan x=-\\frac{9+\\sqrt{33}}{2}" has solutions "360^\\circ-\\tan^{-1}\\frac{9+\\sqrt{33}}{2}" and "180^\\circ-\\tan^{-1}\\frac{9+\\sqrt{33}}{2}"
Answer: a)"210^\\circ, 330^\\circ, \\sin^{-1}\\frac{2}{3}, 180^\\circ-\\sin\\frac{2}{3}"
b)"360^\\circ-\\tan^{-1}\\frac{9-\\sqrt{33}}{2}, 180^\\circ-\\tan^{-1}\\frac{9-\\sqrt{33}}{2},"
"360^\\circ-\\tan^{-1}\\frac{9+\\sqrt{33}}{2}, 180^\\circ-\\tan^{-1}\\frac{9+\\sqrt{33}}{2}"
Comments
Leave a comment