sinπ+cosπ= 1β2cos2π/sin πβcos π
"sin\\theta+cos\\theta=\\frac{1-2cos^2\\theta}{sin\\theta-cos\\theta}"
Rearranging the right hand side(RHS) becomes,
"\\frac{-1(2cos^2\\theta-1)}{-1(cos \\theta-sin\\theta)}=\\frac{2cos^2\\theta-1}{cos\\theta-sin\\theta}"
From the following trigonometric identity,
"cos^2\\theta+sin^2\\theta=1"
then, the numerator,
"2cos^2\\theta-1=2cos^2\\theta-(cos^2\\theta+sin^2\\theta)"
so,
"2cos^2\\theta-1=cos^2\\theta-sin^2\\theta"
Substituting for the numerator in the RHS,
"sin\\theta+cos\\theta=\\frac{cos^2\\theta-sin^2\\theta}{cos\\theta-sin\\theta}"
The numerator of the right hand side is a difference of two squares, thus,
"cos^2\\theta-sin^2\\theta=(cos\\theta+sin\\theta)(cos\\theta-sin\\theta)"
Substituting for the numerator of the RHS,
"sin\\theta+cos\\theta=\\frac{(cos\\theta+sin\\theta)(cos\\theta-sin\\theta)}{cos\\theta-sin\\theta}"
Simplifying the RHS proves that the left hand side is equal to the right hand side, that is,
"sin\\theta+cos\\theta=cos\\theta+sin\\theta"
This proves that,
"sin\\theta+cos\\theta=\\frac{1-2cos^2\\theta}{sin\\theta-cos\\theta}"
Comments
Leave a comment