Find the solution of the equation in the interval 0⁰ ≤ 𝑥 < 360⁰
Solve the worded problem:
Example 6-https://ibb.co/41tVQZt
1. Look back at the model in Example 6 on page 7. On which days of the year are there 10 hours of sunlight in Prescott, Arizona?
2. The tide, or depth of the ocean near the shore, changes throughout the day. The depth of the Bay of Fundy can be modeled by:
link model-https://ibb.co/hmrm7GN
where d is the water depth in feet and t is the time in hours. Consider a day in which t = 0 represents 12:00 A.M. At what time(s) is the water depth 3 1/2 feet
1.
"\\cos x+\\sqrt{3}=-\\cos x""\\cos x=-\\dfrac{\\sqrt{3}}{2}, 0\\degree\\leq x<360\\degree"
"x=150\\degree\\ \\text{or} \\ x=210\\degree"
2.
"\\sin^2 x-\\tan x \\cos x=0""\\sin^2 x-\\dfrac{\\sin x}{\\cos x}\\cdot\\cos x=0, \\cos x\\not=0"
"\\sin x(\\sin x-1)=0, 0\\degree\\leq x<360\\degree"
"x=0\\degree \\text{or}\\ x=180\\degree"
3.
"\\sin x+\\sqrt{2}=-\\sin x""\\sin x=-\\dfrac{\\sqrt{2}}{2}, 0\\degree\\leq x<360\\degree"
"x=225\\degree\\ \\text{or} \\ x=315\\degree"
4.
"2\\cos^2 x-5\\cos x=3""2\\cos^2 x-5\\cos x-3=0"
"\\cos x=-\\dfrac{1}{2} \\ \\text{or} \\ \\cos x=3, -1\\leq \\cos x\\leq 1"
Then
"\\cos x=-\\dfrac{1}{2}, 0\\degree\\leq x<360\\degree""x=120\\degree \\text{or}\\ x=240\\degree"
5.
"\\sqrt{3}\\csc x+2=0""\\sin x=-\\dfrac{\\sqrt{3}}{2}, 0\\degree\\leq x<360\\degree"
"x=240\\degree\\ \\text{or} \\ x=300\\degree"
1.
"10=2.325\\sin {\\dfrac{\\pi}{6}(t-2.667)}+12.155""2.325\\sin {\\dfrac{\\pi}{6}(t-2.667)}=10-12.155"
"\\sin {\\dfrac{\\pi}{6}(t-2.667)}=-\\dfrac{2.155}{2.325}"
"\\dfrac{\\pi}{6}(t-2.667)\\approx(-1)^n\\sin^{-1}(-0.927)+\\pi n, n\\in\\Z"
"\\dfrac{\\pi}{6}(t-2.667)\\approx-1.186"
"t\\approx0.402"
"t_1=12\\text{ days}"
Or
"t\\approx10.932"
"t_2=10\\text{\\ months plus 28 days}"
2.
"3.5=35-28\\cos {(\\dfrac{\\pi}{6.2}t})"
"\\cos {(\\dfrac{\\pi}{6.2}t})=1.125"
No solution
Comments
Leave a comment