Cos³θ +sin³θ =1/4(cos³θ +3cosθ - sin³θ + 3sinθ)
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\sin3\\theta &=\\small 3\\sin\\theta-4\\sin\\theta^3\\\\\n\\small \\cos3\\theta&=\\small 4\\cos^3\\theta -3\\cos\\theta\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small 4\\cos^3\\theta &=\\small \\cos3\\theta+3\\cos\\theta\\\\\n\\small \\cos^3\\theta&=\\small \\frac{1}{4}\\cdot(\\cos3\\theta+3\\cos\\theta)\\cdots\\cdots(1)\\\\\n\\\\\n\\small 4\\sin^3\\theta&=\\small 3\\sin\\theta-\\sin^3\\theta\\\\\n\\small \\sin^3\\theta&=\\small \\frac{1}{4}\\cdot(3\\sin\\theta-\\sin^3\\theta)\\cdots\\cdots(2)\\\\\n\\\\\n&\\small\\text{Then by (1)+(2)}\\\\\n\\\\\n\\small \\sin^3\\theta+\\cos^3\\theta &=\\small \\frac{1}{4}(3\\sin\\theta-\\sin^3\\theta) +\\frac{1}\n{4}(\\cos3\\theta+3\\cos\\theta)\\\\\n&=\\small \\frac{1}{4}\\Big[3\\cos\\theta+\\cos3\\theta+3\\sin\\theta-\\sin^3\\theta\\Big]\n\\end{aligned}"
Comments
Dear Yusuf Idris, please use the panel for submitting a new question.
Evaluate : Lim x tends to 0 ( x ²cos3x) ÷ (x³ + 4x²)
Leave a comment