Show by expanding (cosa + isina) (cosB + isinB) and using trigonometry Identities that (cosa + isina)(cosB +isinB)= cos(a+B) + isin(a+B)
Given, a trigonometric expression (cosa + isina) (cosB + isinB).
(cosa + isina) (cosB + isinB)= cosa (cosB + isinB) + isina(cosB + isinB)
=cosa cosB + icosa sinB + isina cosB - sina sinB
Separate real and imaginary part.
=cosa cosB - sina sinB + i(sina cosB + cosa sinB)
Trigonometry indenties, cos(x+y)=cosx cosy - sinx siny
and sin(x+y)=sinx cosy + cosx siny
Therefore,
(cosa + isina) (cosB + isinB) = cos(a+B) + isin(a+B)
Comments
Leave a comment