Express 2cos"\\theta" +sin"\\theta" in the form of Rcos("\\theta" −"\\alpha") where r > 0 and 0o< "\\alpha" <90o.
Hence,
(a) find its maximum and minimum values.
(b) solve 2cos"\\theta" +sin"\\theta" = 2 for 0o less than or equal to "\\theta", "\\theta" is less than or equal 360o. Give your answer to the nearest 0.1o.
"2cos\\theta + sin\\theta=Rcos\u03b8cos\u03b1+Rsin\u03b8sin\u03b1."
Rcosθcosα=2cosθ
Rsinθsinα=sinθ
Rcosα=2... eqtn 1
Rsinα=1...eqtn 2
Divide 2 by 1
Sinα/Cosα=1/2
Tanα=1/2
α=26.3o
Using SOH,CAH, TOA
Sinα=1/R
Cosα=2/R
Therefore R can be the hypotenuse
Hence, R=√ (12+22)
R=√5
2cosθ+sinθ=(√5)Cos(θ-26.3).
a)Using Rattafication formula for 2cosθ+sinθ
±√ (a2+ b2), where a =1, b =2, max is +and minimum is -.
Max is =+√(12+22)=√(-5).
Min is= - √(12+22)= -√(-5).
b) 2cosθ+sinθ=2
2cosθ-2=-sinθ
Square both sides
(2cosθ-2)2 =(-sinθ)2
4cos2θ -8cosθ+4=sin2θ
Recall that sin2θ=1-cos2θ
4cos2θ-8cosθ+4=1+cos2θ
4cos2θ-8cosθ+4-1-cos2θ=0
3cos2θ-8cosθ+3=0.
Using quadratic formula,
Cosθ=(-b±√(b2−4ac)) /2a
Where a=3,b=-8 and c=3.
Cosθ=(-(-8)±√((-8)2-(4x3x3))/(2x3)
Cosθ=(8±√(64-36))/6
Cosθ=(8±√(28)) /6
Cosθ=(8±5.29)/6
Cosθ=(8+5.29)/6 and (8-5.29)/6
Cosθ=(13.29/6) and (2.71/6)
Cosθ=2.22 and 0.45
Cosθ=2.22,Cosθ=0.45
Cosθ cannot be equal to 2.22.
Therefore Cosθ =0.45,θ=63.3o
Comments
Leave a comment