Answer to Question #263809 in Trigonometry for kazbek

Question #263809

y=ctgx+sin2x3

1
Expert's answer
2021-11-18T15:04:23-0500

"y=\\ctg x+\\sin^2x^3"


"(\\ctg x)'= -\\dfrac1{\\sin\u00b2\\ x}"


"(\\sin^2x)' = sin(2x)\\\\\n\\therefore a = (\\sin^2x^3)' =(\\sin x\u00b3 \u00d7 \\sin x\u00b3)'\\\\\nu = \\sin x\u00b3 ;\\quad du = 3x\u00b2\\cos x\u00b3\\\\\nv = \\sin x\u00b3 ;\\quad dv= 3x\u00b2\\cos x\u00b3\\\\\nda\/dx = vdu + udv\\\\\n\\therefore(\\sin x\u00b3 \u00d7 \\sin x\u00b3)' = \\\\\n3x\u00b2\\sin x\u00b3\\cos x\u00b3 + 3x\u00b2\\sin x\u00b3\\cos x\u00b3 = 6x\u00b2\\sin x\u00b3\\cos x\u00b3"


"dy\/dx = -\\dfrac1{\\sin^2 x}+ 6x\u00b2 \\sin x\u00b3\\cos x\u00b3"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS