The following table lists several orbital properties of each planet in the solar system. Mean distances from Sun are expressed in terms of astronomical units (1 AU = 1.496 x 1011 m).
Table: https://cutt.ly/6zq2BQm
You are to obtain some of the values in the table using Newton’s law of universal gravitation. In all calculations involving the mass of Sun, use M = 1.989 × 1030 kg. Assume that all orbits are circular.
1. Calculate the acceleration of each planet due to the gravity of Sun.
2. Recall that an object in uniform circular motion experiences acceleration directed towards the midpoint of the circle according to the equation
where a is the acceleration of the object, v is the velocity of the object, and r is the radius of the circular path. Calculate the mean orbital velocity of each planet using the above equation. Express your answers in units of km/s.
1. The gravitational acceleration is
"a = \\dfrac{F_g}{m} = \\dfrac{GM_{\\odot}}{R^2}" , where a is the semi-major axis of the planet's orbit.
For Mercury: "a = \\dfrac{6.67\\cdot10^{-11}\\cdot1.989\\cdot10^{30}}{(0.39\\cdot1.496\\cdot10^{11})^2} = 0.039\\,\\mathrm{m\/s^2}."
For Venus: "a = \\dfrac{6.67\\cdot10^{-11}\\cdot1.989\\cdot10^{30}}{(0.72\\cdot1.496\\cdot10^{11})^2} = 0.011\\,\\mathrm{m\/s^2}."
For Earth: "a = \\dfrac{6.67\\cdot10^{-11}\\cdot1.989\\cdot10^{30}}{(1\\cdot1.496\\cdot10^{11})^2} = 5.9\\cdot10^{-3}\\,\\mathrm{m\/s^2}."
For Mars: "a = \\dfrac{6.67\\cdot10^{-11}\\cdot1.989\\cdot10^{30}}{(1.52\\cdot1.496\\cdot10^{11})^2} = 2.6\\cdot10^{-3}\\,\\mathrm{m\/s^2}."
For Jupiter: "a = \\dfrac{6.67\\cdot10^{-11}\\cdot1.989\\cdot10^{30}}{(5.20\\cdot1.496\\cdot10^{11})^2} = 2.2\\cdot10^{-4}\\,\\mathrm{m\/s^2}."
For Saturn: "a = \\dfrac{6.67\\cdot10^{-11}\\cdot1.989\\cdot10^{30}}{(9.54\\cdot1.496\\cdot10^{11})^2} = 6.5\\cdot10^{-5}\\,\\mathrm{m\/s^2}."
For Uranus: "a = \\dfrac{6.67\\cdot10^{-11}\\cdot1.989\\cdot10^{30}}{(19.18\\cdot1.496\\cdot10^{11})^2} = 1.6\\cdot10^{-5}\\,\\mathrm{m\/s^2}."
For Neptune: "a = \\dfrac{6.67\\cdot10^{-11}\\cdot1.989\\cdot10^{30}}{(30.06\\cdot1.496\\cdot10^{11})^2} = 6.6\\cdot10^{-6}\\,\\mathrm{m\/s^2}."
2. "a = \\dfrac{V^2}{R}, \\;\\; \\;\\; V = \\sqrt{aR},"
for Mercury "V = \\sqrt{0.039\\cdot 0.39\\cdot 1.496\\cdot10^{11}} = 47.7\\,\\mathrm{km\/s},"
for Venus "V = \\sqrt{0.011\\cdot 0.72\\cdot 1.496\\cdot10^{11}} = 34.4\\,\\mathrm{km\/s},"
for Earth "V = \\sqrt{0.0059\\cdot 1\\cdot 1.496\\cdot10^{11}} = 29.7\\,\\mathrm{km\/s},"
for Mars "V = \\sqrt{0.0026\\cdot1.52\\cdot 1.496\\cdot10^{11}} = 24.3\\,\\mathrm{km\/s},"
for Jupiter "V = \\sqrt{0.00022\\cdot 5.2\\cdot 1.496\\cdot10^{11}} = 13.1\\,\\mathrm{km\/s},"
for Saturn "V = \\sqrt{0.000065\\cdot 9.54\\cdot 1.496\\cdot10^{11}} =9.6\\,\\mathrm{km\/s},"
for Uranus "V = \\sqrt{0.000016\\cdot 19.18\\cdot 1.496\\cdot10^{11}} = 6.8\\,\\mathrm{km\/s},"
for Neptune "V = \\sqrt{0.0000066\\cdot 30.06\\cdot 1.496\\cdot10^{11}} = 5.4\\,\\mathrm{km\/s}."
Comments
Leave a comment