Compare the shift in frequency if a 2000Hz source is moving towards you at 15ms-1 versus if you are moving towards it at 15ms-1. Are the two frequencies exactly the same? Are they close? Repeat
the calculation for 150ms-1 and then again for 300ms-1. What can you conclude about the asymmetry of the Doppler formulas? Show that at low speeds (relative to the speed of sound), the two formulas-source approaching and detector approaching-yield the same result.
"v_{snd} = 343 \\;m\/s"
At 15 m/s
"f\u2019_{source} = f\\frac{1}{1 -\\frac{v_{stc}}{v_{snd}}} \\\\\n\n= 2000 \\times \\frac{1}{1 -\\frac{15}{343}} \\\\\n\n= 2092 \\;Hz \\\\\n\nf\u2019_{observer} = f(1 + \\frac{v_{stc}}{v_{snd}}) \\\\\n=2000(1 +\\frac{15}{343}) \\\\\n= 2087 \\;Hz"
At 150 m/s
"f\u2019_{source} = f\\frac{1}{1 -\\frac{v_{stc}}{v_{snd}}} \\\\\n\n= 2000 \\times \\frac{1}{1 -\\frac{150}{343}} \\\\\n\n= 3554 \\;Hz \\\\\n\nf\u2019_{observer} = f(1 + \\frac{v_{stc}}{v_{snd}}) \\\\\n=2000 (1 +\\frac{150}{343}) \\\\\n= 2874 \\;Hz"
At 300 m/s
"f\u2019_{source} = f\\frac{1}{1 -\\frac{v_{stc}}{v_{snd}}} \\\\\n\n= 2000 \\times \\frac{1}{1 -\\frac{300}{343}} \\\\\n\n= 15,961 \\;Hz \\\\\n\nf\u2019_{observer} = f\\frac{1}{1 + \\frac{v_{stc}}{v_{snd}}} \\\\\n=2000 (1 +\\frac{300}{343}) \\\\\n= 3749 \\;Hz"
At low speeds (relative to the speed of sound), the two formulas-source approaching and detector approaching-yield the same result.
"f\u2019_{source} = f\\frac{1}{1 -\\frac{v_{stc}}{v_{snd}}} \\\\\n\nf\u2019_{source} = f(1 -\\frac{v_{stc}}{v_{snd}})^{-1} \\\\\n\nf\u2019_{source} \u2248 f(1 +\\frac{v_{stc}}{v_{snd}}) \\\\\n\nf\u2019_{source} = f\u2019_{observer}"
Comments
Leave a comment