In order to evaluate commutator "[x, e^{i a p}]", we need to expand the exponent into Taylor series, i.e. "e^{i a p} = 1 + i a p + \\frac{(i a p)^2}{2!} + \\frac{(i a p)^3}{3!} + ...".
Since the commutator is linear in both arguments, we need to evaluate commutators like "[x, p^n]". Using Leibniz rule for commutators and canonical commutation relation "[x, p] = i \\hbar":
"[x, p^n] = (i \\hbar) p^{n-1} + p (i \\hbar) p^{n-2} + ... + p^{n-1} (i \\hbar) = i \\hbar n p^{n-1}".
Hence,
"[x, e^{i a p}] = [x, 1 + i a p + \\frac{(i a p)^2}{2!} + \\frac{(i a p)^3}{3!} + ...] ="
"= (i \\hbar)[(i a)^1 + \\frac{(i a)^2}{2!} \\cdot 2 \\cdot p^1 + \\frac{(i a)^3}{3!} \\cdot 3 \\cdot p^2 +... = (i \\hbar) (i a) \\sum_{n=0}^{\\infty} \\frac{(i a p)^n}{n!} = - a \\hbar e^{i a p}".
Comments
Leave a comment