A wave function is given to be π(π₯) = π( π₯ /π₯0 )^ ππ βπ₯/π₯0, π, π, π₯0 πππ ππππ π‘πππ‘π From Schrodinger wave equation find potential V(x) and the energy E for which π(π₯) is an Eigen function.
Let's write Schrodinger equation applied to "\\psi(x)" :
"-\\frac{\\hbar^2}{2m} \\psi'' +V\\psi = E\\psi"
First calculate "\\psi''" :
"\\psi''=N e^{-x\/x_0} (\\frac{n(n-1)}{x_0^2} (\\frac{x}{x_0})^{n-2}-2\\frac{n}{x_0^2}(\\frac{x}{x_0})^{n-1}+\\frac{1}{x_0^2}(\\frac{x}{x_0})^n)"
"\\psi''=Ne^{-x\/x_0} (\\frac{x}{x_0})^n (\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2}) = \\psi (\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})"
Now we substitue this expression into the Schrodinger equation :
"(\\frac{-\\hbar^2}{2m}(\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})+V)\\psi = E\\psi"
As "\\psi\\neq 0" everywhere except for "x=0", we can simplify by "\\psi" and find
"\\frac{-\\hbar^2}{2m}(\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})+V = E"
"V=E+\\frac{\\hbar^2}{2m}(\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})"
As "V\\to 0" when "|x|\\to+\\infty" , we find that
"E=-\\frac{\\hbar^2}{2mx_0^2}"
"V=\\frac{\\hbar^2}{2m}(-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})"
Comments
Leave a comment