Use the variational principle to obtain an upper limit to ground state energy of a particle in one dimensional box.
"= <H>=<\\psi\/H\/\\psi>=\\int_{-\\infty}^{\\infty}\\psi*(H\\psi)dz"
"H=\\frac{eB_x}{m}Sy=\\frac{e\\bar{h}By}{m}[_1^0 \\space _0^{-i}] \/\\psi>=[^{cos\\theta}_{sin\\theta}]"
So, "<\\psi\/=[cos\\theta sin\\theta]"
"=<H>=<\\psi\/H\/\\psi\/>"
"=[cos \\theta sin \\theta][_1^0 \\space_0^{-i}][_{sin\\theta}^{cos \\theta}] \\frac{ehBy}{m}"
"=[-icos\\theta sin\\theta+sin \\theta cos \\theta]\\frac{ehBy}{m}=0"
"\\therefore <H>= <\\psi\/\\mu\/\\psi>=0"
Comments
Leave a comment