• Do the calculations on Matlab, print it out and then write your answers on the attached answer
sheet.
• Attach your Matlab printout to your answer sheet before you hand in.
1. Find all solutions for each of the following systems of equations (if the system is consistent):
(a) 6.5x − 2y = 7 (b) 3.5x1 + 4.5x2 + 5.5x3 = 11
2x − 0.75y = 1.75 x1 + 4x2 − 7x3 = −16
12x − y = 21 0.5x1 − 0.75x2 + 0.75x3 = 3.5
(c) − 0.75x1 + 0.75x2 = −6 (d) 3.4x1 + 3.4x2 − 15.3x3 = −20.4
2.5x1 + 2x2 − 4.5x3 = 2 0.5x1 + 0.25x2 − 0.75x3 = 1
1.25x1 + 1.25x2 − 2.5x3 = 0 0.75x1 + 0.5x2 − 1.5x3 = 1
Please note: You should use Matlab to write your systems in reduced row echelon form, but have to
interpret the results and give the solution(s) if the system is consistent.
a
>> A = [6.6 -2
    2 -0.75
    12 -1];
A(:,3) = [7; 1.75; 21];
R = rref(A)
R =
    1    0    0
    0    1    0
    0    0    1
The system is inconsistent
b.
>> A = [3.5 4.5 5.5
    1 4 -7
    0.5 -0.75 0.75];
A(:,4) = [11; -16; 3.5];
R = rref(A)
R =
   1.0000        0        0   2.1840
        0   1.0000        0  -1.4303
        0        0   1.0000   1.7804
So x1 = 2.1840; x2 = -1.4303; x3 = 1.7804
c.
>> A = [-0.75 0.75 0
   2.5 2 -4.5
   1.25 1.25 -2.5];
A(:,4) = [-6; 2; 0];
R = rref(A)
R =
    1    0   -1    4
    0    1   -1   -4
    0    0    0    0
So x1 = 4 + x3; x2 = -4 + x3
d.
>> A = [3.4 3.4 -15.3
   0.5 0.25 -0.75
   0.75 0.5 -1.5];
A(:,4) = [-20.4; 1; 1];
R = rref(A)
R =
    1    0    0    4
    0    1    0    8
    0    0    1    4
So x1 = 4; x2 = 8; x3 = 4
Comments
Leave a comment