Answer to Question #300590 in Calculus for Paul

Question #300590

Evaluate this integral x(x²+4)dx / x⁴+9

1
Expert's answer
2022-02-22T05:21:55-0500
"\\int \\dfrac{x(x^2+4)}{x^4+9}dx"

Substitute "x^2=u, 2xdx=du"


"\\int \\dfrac{x(x^2+4)}{x^4+9}dx=\\dfrac{1}{2}\\int \\dfrac{u+4}{u^2+9}du"

"=\\dfrac{1}{2}\\int \\dfrac{u}{u^2+9}du+2\\int \\dfrac{du}{u^2+9}"

"\\dfrac{1}{2}\\int \\dfrac{u}{u^2+9}du"

"t=u^2+9, dt=2udu"

"\\dfrac{1}{2}\\int \\dfrac{u}{u^2+9}du=\\dfrac{1}{4}\\int \\dfrac{dt}{t}="

"=\\dfrac{1}{4}\\ln |t|+C_1=\\dfrac{1}{4}\\ln(u^2+9)+C_1"

"=\\dfrac{1}{4}\\ln(x^4+9)+C_1"

"2\\int \\dfrac{du}{u^2+9}"

"s=\\dfrac{u}{3}, ds=\\dfrac{1}{3}du"

"2\\int \\dfrac{du}{u^2+9}=2\\int \\dfrac{3ds}{9s^2+9}=\\dfrac{2}{3}\\int \\dfrac{ds}{1+s^2}"

"=\\dfrac{2}{3}\\tan^{-1}(s)+C_2=\\dfrac{2}{3}\\tan^{-1}(\\dfrac{u}{3})+C_2"


"=\\dfrac{2}{3}\\tan^{-1}(\\dfrac{x^2}{3})+C_2"

Then


"\\int \\dfrac{x(x^2+4)}{x^4+9}dx=\\dfrac{1}{4}\\ln(x^4+9)+\\dfrac{2}{3}\\tan^{-1}(\\dfrac{x^2}{3})+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog