Answer to Question #348841 in Calculus for Lenie

Question #348841

Tell whether if the following piecewise function is a continuous at a given point or not. (SHOW THE SOLUTION).



1. at x = 4



x + 1 if x < 4


(x - 4)² + 3 if x ≥ 4




1
Expert's answer
2022-06-08T13:38:49-0400

1.


"\\lim\\limits_{x\\to4^-}f(x)=\\lim\\limits_{x\\to4^-}(x+1)=4+1=5""\\lim\\limits_{x\\to4^+}f(x)=\\lim\\limits_{x\\to4^+}((x-4)^2+3)=(4-4)^2+3=3""\\lim\\limits_{x\\to4^-}f(x)=5\\not=3=\\lim\\limits_{x\\to4^+}f(x)""\\lim\\limits_{x\\to4}f(x)=\\text{does not exist}"

The function "f(x)" is not continuous at "x=4."

The function "f(x)" has a jump discontinuity at "x=4."



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS