"S_1=2(1)^2-1=1=>a_1=1""S_2=S_1+a_2=1+a_2=2(2)^2-2=6=>a_2=5""S_3=S_2+a_3=6+a_3=2(3)^2-3=15=>a_3=9""S_4=S_3+a_4=15+a_4=2(4)^2-4=28=>a_4=13""S_5=S_4+a_5=28+a_5=2(5)^2-5=45=>a_5=17""...""S_{n+1}=S_n+a_{n+1}=2(n)^2-n+a_{n+1}=""=2(n+1)^2-(n+1)=>a_{n+1}=4n+1"
"a_{n+1}=4n+1"
"a_n=1+4(n-1)"
"d=a_{n+1}-a_n=4"
The series is an arithmetic progression: "a_1=1, d=4."
Comments
Leave a comment