(a) Given in the system with origin "O"
In new system with origin "O'"
We have that for new system
Then
"=\\dfrac{m_1(\\overline{r}_1+\\overline{OO'})+m_2(\\overline{r}_2+\\overline{OO'})+...+m_n(\\overline{r}_n+\\overline{OO'})}{m_1+m_2+...+m_n}="
"=\\dfrac{m_1\\overline{r}_1+m_2\\overline{r}_2+...+m_n\\overline{r}_n}{m_1+m_2+...+m_n}+"
"+\\dfrac{m_1+m_2+...+m_n}{m_1+m_2+...+m_n}\\overline{OO'}="
"=\\dfrac{m_1\\overline{r}_1+m_2\\overline{r}_2+...+m_n\\overline{r}_n}{m_1+m_2+...+m_n}+\\overline{OO'}="
"=\\overline{r}_G+\\overline{OO'}"
The center of mass G of the particles is at the same point of space.
(b) Given
"\\overline{F}_1=80\\overline{i}+20\\overline{j}+100\\overline{k},"
"\\overline{F}_2=60\\overline{i}-40\\overline{j}+80\\overline{k},"
"\\overline{F}_3=-50\\overline{i}-100\\overline{j}+80\\overline{k}."
The force of gravity is "\\overline{F}_G=m\\overline{g}=-40\\cdot9.8\\overline{k}=-392\\overline{k}"
Let "\\overline{F}_4=F_{4x}\\overline{i}+F_{4y}\\overline{j}+F_{4z}\\overline{k}."
i.
An object of mass 40kg is supported in equilibrium
Substitute
"+(-50\\overline{i}-100\\overline{j}+80\\overline{k})+F_{4x}\\overline{i}+F_{4y}\\overline{j}+F_{4z}\\overline{k}+"
"+(-392\\overline{k})=0"
"80+60-50+F_{4x}=0=>F_{4x}=-90"
"20-40-100+F_{4y}=0=>F_{4y}=120"
"100+80+80+F_{4z}-392=0=>F_{4z}=132"
"|\\overline{F}_4|=\\sqrt{(-90)^2+(120)^2+(132)^2}=\\sqrt{39924}="
"=6\\sqrt{1109}\\approx200(N)"
ii.
"\\overline{F}_1=80\\overline{i}+20\\overline{j}+100\\overline{k},"
"\\overline{F}_4=-90\\overline{i}+120\\overline{j}+132\\overline{k}."
"\\overline{F}_1\\cdot\\overline{F}_4=80(-90)+20(120)+100(132)=8400"
"|\\overline{F}_1|=\\sqrt{(80)^2+(20)^2+(100)^2}=\\sqrt{16800}="
"=20\\sqrt{42}(N)"
"\\theta=\\arccos{\\dfrac{8400}{20\\sqrt{42}(6\\sqrt{1109})}}=\\arccos{70\\over \\sqrt{46578}}\\approx71\\degree"
The angle between F1 and F4 is approximately "71\\degree."
Comments
Leave a comment