A. Elimination Method; 1. 2x-5y = 9; 3x+4y = 6 2. 3x+4y= 3; 4x-5y=5
"1. \\\\\n2x-5y=9\\\\\n3x+4y=6\\\\\n\\left \\{\\begin{matrix}\n 4(2x-5y)=4\\cdot9 \\\\\n 5(3x+4y)=5\\cdot6\n\\end{matrix}\\right.\\\\\n\\left \\{\\begin{matrix}\n 8x-20y=36 \\\\\n 15x+20y=30\n\\end{matrix}\\right.\\\\\n23x=66\\\\\nx=\\frac{66}{23}\\\\\n2\\cdot\\frac{66}{23}-5y=9\\\\\n5y=\\frac{132}{23}-9\\\\\n5y=-\\frac{75}{23}\\\\\ny=-\\frac{15}{23}\\\\(\\frac{66}{23},-\\frac{15}{23})"
"2. \\\\\n3x+4y=3\\\\\n4x-5y=5\\\\\n\\left \\{\\begin{matrix}\n 5(3x+4y)=5\\cdot3 \\\\\n 4(4x-5y)=4\\cdot5\n\\end{matrix}\\right.\\\\\n\\left \\{\\begin{matrix}\n 15x+20y=15 \\\\\n 16x-20y=20\n\\end{matrix}\\right.\\\\\n31x=35\\\\\nx=\\frac{35}{31}\\\\\n3\\cdot\\frac{35}{31}+4y=3\\\\\n4y=3-\\frac{105}{31}\\\\\n4y=-\\frac{12}{31}\\\\\ny=-\\frac{3}{31}\\\\(\\frac{35}{31},-\\frac{3}{31})"
Comments
Leave a comment