Given a function "f(x)" , the derivative (by definition) is:
"f^{\\prime}(x)=\\lim _{h \\rightarrow 0} \\frac{f(x+h)-f(x)}{h}" Now , given "\ud835\udc54(\ud835\udc65) = \ud835\udc65 \ud835\udc53(\ud835\udc65)" ,
"\\begin{aligned}\ng'(x) = & \\lim_{h \\rightarrow 0} \\frac{(x+h)f(x+h) - xf(x)}{h}\\\\\n=& \\lim_{h \\rightarrow 0} \\frac{xf(x+h)+hf(x+h) - xf(x)}{h}\\\\\n=& \\lim_{h \\rightarrow 0} \\frac{xf(x+h)- xf(x)+hf(x+h)}{h}\\\\\n=& \\lim_{h \\rightarrow 0} \\frac{x(f(x+h)- f(x))+hf(x+h)}{h}\\\\\n=& \\lim_{h \\rightarrow 0} \\frac{x(f(x+h)- f(x))}{h} + \\lim_{h \\rightarrow 0} \\frac{hf(x+h)}{h}\\\\\n=& \\lim_{h \\rightarrow 0} x\\Bigg(\\frac{f(x+h)- f(x)}{h}\\Bigg) + \\lim_{ h\\rightarrow 0} f(x+h)\\\\\ng'(x)= & xf'(x) + f(x)\n\\end{aligned}" Q.E.D
Comments
Leave a comment