Given that y= acoskx + bsinkx, show that d²y/dx² + k²y =0
"y(x)=acos(kx)+bsin(kx)"
"y'(x)=-a\\times ksinkx+b\\times kcos(kx)"
"y"(x)=-a\\times k^2\\times cos(kx)-b\\times k^2sin(kx)"
From this its clear that,
"y"(x)=-k^2\\times y(x)"
y"+k2y=0
Hence,
"\\frac{d^2y}{dx^2}+k^2y=0"
Comments
Leave a comment