Find the surface area of that part of the planeĀ 4š„+5š¦+š§=8
4x+5y+z=8Ā that lies inside the elliptic cylinderĀ (x2/100) + (y2/81) =1
"z=-4x-5y+8\\\\\\frac{x^2}{100}+\\frac{y^2}{81}\\leqslant 1\\\\\\sqrt{1+z{'_x}^2+z{'_y}^2}=\\sqrt{1+4^2+5^2}=\\sqrt{42}\\\\S=\\iint_{\\frac{x^2}{100}+\\frac{y^2}{81}\\leqslant 1}{\\sqrt{42}dxdy}=\\sqrt{42}S\\left\\{ \\frac{x^2}{100}+\\frac{y^2}{81}\\leqslant 1 \\right\\} \\\\\\frac{x^2}{100}+\\frac{y^2}{81}\\leqslant 1 is\\,\\,an\\,\\,ellipse\\,\\,with\\,\\,a=10,b=9, hence\\\\S\\left\\{ \\frac{x^2}{100}+\\frac{y^2}{81}\\leqslant 1 \\right\\} =\\pi ab=\\pi \\cdot 10\\cdot 9=90\\pi \\\\S=90\\pi \\sqrt{42}"
Comments
Leave a comment