Water is being poured at the rate of 2π cubic meter/min into an inverted conical tank that is 12-meter deep with a radius of 6 meters at the top. If the water level is rising at the rate of 1/6 m/min and there is a leak at the bottom of the tank, how fast is the water leaking when the water is 6-meter deep?
"H=12,R=6,h=6\\\\The\\,\\,volume\\,\\,of\\,\\,the\\,\\,water\\,\\,depending\\,\\,of\\,\\,the\\,\\,height:\\\\V\\left( h \\right) =\\left( \\frac{h}{H} \\right) ^3V\\left( H \\right) =\\left( \\frac{h}{H} \\right) ^3\\cdot \\frac{1}{3}\\pi R^2H=\\\\=\\pi \\cdot \\frac{1}{3}\\cdot \\frac{6^2}{12^2}h^3=\\frac{\\pi}{12}h^3\\\\\\frac{dh}{dt}=\\frac{1}{6}\\Rightarrow \\frac{dV}{dt}=\\frac{\\pi}{12}\\cdot 3h^2\\frac{dh}{dt}=\\frac{3\\pi \\cdot 6^2}{12}\\cdot \\frac{1}{6}=1.5\\pi \\\\v_l-the\\,\\,speed\\,\\,of\\,\\,leaking\\\\1.5\\pi =\\frac{dV}{dt}=2\\pi -v_l\\Rightarrow v_l=0.5\\pi"
Comments
Leave a comment