Evaluate limits involving the expressions (sin t/t), (1 - cos t)/t) and ((e ^ t- 1)/t) and indeterminate forms type "0/0"
Directions: Create example of limits of functions and evaluate their limits.
1.(sint)/t
2.(1 - cos t)/t
3.(e ^ t - 1)/t
Using L'Hospital's rule we can write:
"\\displaystyle\\lim_{\\mathclap{t\\to0}} {\\frac{\\sin t}{t}}= \\lim_{\\mathclap{t\\to0}}{\\frac{(\\sin t)\u2019}{t\u2019}}= \\lim_{\\mathclap{t\\to0}} {\\frac{\\cos t}{1}}=1"
"\\displaystyle\\lim_{\\mathclap{t\\to0}} {\\frac{1-\\cos t}{t}}= \\lim_{\\mathclap{t\\to0}}{\\frac{(1-\\cos t)\u2019}{t\u2019}}= \\lim_{\\mathclap{t\\to0}} {\\frac{\\sin t}{1}}=0"
"\\displaystyle\\lim_{\\mathclap{t\\to0}} {\\frac{e^t-1}{t}}= \\lim_{\\mathclap{t\\to0}}{\\frac{(e^t-1)\u2019}{t\u2019}}= \\lim_{\\mathclap{t\\to0}} {\\frac{e^t}{1}}=1"
Comments
Leave a comment