Answer to Question #118125 in Complex Analysis for Amoah Henry

Question #118125
In an Argand diagram, the point P represents the complex number z, where z = x+iy. Given that z+2 = λi(z+8), where λ is a real parameter, find the Cartesian equation of the locus of P as λ varies. If also z = µ(4 + 3i), where µ is real, prove that there is only one possible position for P.
1
Expert's answer
2020-05-25T21:22:47-0400
"x+iy+2=\\lambda i(x+iy+8)"

"x+2+\\lambda y+i(y-\\lambda(x+8)=0)"

"x=-2-\\lambda y""y=\\lambda x+8\\lambda"

"x=-2-\\lambda^2x-8\\lambda^2""y=\\lambda x+8\\lambda"

"x=-{2+8\\lambda^2 \\over 1+\\lambda^2}""y={-2\\lambda-8\\lambda^3+8\\lambda+8\\lambda^3 \\over 1+\\lambda^2}"

"x=-{2+8\\lambda^2 \\over 1+\\lambda^2}"

"y={6\\lambda \\over 1+\\lambda^2}"

"z=-{2+8\\lambda^2 \\over 1+\\lambda^2}+i{6\\lambda \\over 1+\\lambda^2}"

Or


"z+2=\\lambda iz+8\\lambda i"

"z={-2+8\\lambda i\\over 1-\\lambda i}"

"z={(-2+8\\lambda i)(1+\\lambda i)\\over 1+\\lambda^2}"

"z=-{2+8\\lambda^2 \\over 1+\\lambda^2}+i{6\\lambda \\over 1+\\lambda^2}"

If "z=\\mu(4+3i)"


"-{2+8\\lambda^2 \\over 1+\\lambda^2}=4\\mu""{6\\lambda \\over 1+\\lambda^2}=3\\mu"

Then


"-{1\\over 2}-2\\lambda^2=2\\lambda"

"(\\lambda+{1\\over 2})^2=0"

"\\lambda=-{1\\over 2}"

"\\mu=-{4\\over 5}"

"z=-{16 \\over 5}-i{12\\over 5}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS