Show that, for any complex number z, zz = |z|
2
, z + z = 2Re(z) and Re(z) ≤ |z|. Hence
show that
i. |z1 + z2|
2 = |z1|
2 + |z2|
2 + 2Re(z1z2),
ii. |z1 + z2| ≤ |z1| + |z2|,
where Re(z) is the real part of z and z the conjugate of z. [26 marks]
(b) If z1 = 1 + 2i, find the set of values of z2 for which
(i) |z1 + z2| = |z1| + |z2| (ii) |z1 + z2| = |z1| − |z2|.