solve the equation in exact differentials
2xydx+(x2-y2)dy=0
"2xydx+(x^2-y^2)dy=0\n\\\\ \\Rightarrow 2xydx=(y^2-x^2)dy\n\\\\ \\Rightarrow \\dfrac{dy}{dx}=\\dfrac{2xy}{y^2-x^2} \\ ...(i)"
Put "y=vx"
"\\dfrac{dy}{dx}=v+x\\dfrac{dv}{dx}"
Using these in (i).
"v+x\\dfrac{dv}{dx}=\\dfrac{2vx^2}{v^2x^2-x^2}\n\\\\ \\Rightarrow x\\dfrac{dv}{dx}=\\dfrac{2v}{v^2-1}-v"
"\\\\ \\Rightarrow x\\dfrac{dv}{dx}=\\dfrac{2v-v^3+v}{1-v^2}=\\dfrac{3v-v^3}{1-v^2}\n\\\\ \\Rightarrow x\\dfrac{dv}{dx}=\\dfrac{v(3-v^2)}{1-v^2}\n\\\\ \\Rightarrow \\dfrac{(1-v^2)dv}{v(3-v^2)}=\\dfrac{dx}{x}"
"\\\\ \\Rightarrow \\dfrac{1}{v\\left(3-v^2\\right)}dv- \\dfrac{v^2}{v\\left(3-v^2\\right)}dv=\\dfrac{dx}{x}"
Using partial fractions,
"[\\dfrac{1}{3v}-\\dfrac{1}{6\\left(v+\\sqrt{3}\\right)}-\\dfrac{1}{6\\left(v-\\sqrt{3}\\right)}]dv-\\dfrac{v}{3-v^2}dv=\\dfrac{dx}{x}\n\\\\ \\Rightarrow [\\dfrac{1}{3v}-\\dfrac{1}{6\\left(v+\\sqrt{3}\\right)}-\\dfrac{1}{6\\left(v-\\sqrt{3}\\right)}]dv+\\dfrac12.\\dfrac{-2v}{3-v^2}dv=\\dfrac{dx}{x}"
On integrating,
"\\frac{1}{3}\\ln \\left|v\\right|-\\frac{1}{6}\\ln \\left|v+\\sqrt{3}\\right|-\\frac{1}{6}\\ln \\left|v-\\sqrt{3}\\right|-\\left(-\\frac{1}{2}\\ln \\left|3-v^2\\right|\\right)=\\ln |x|+\\ln C"
"\\Rightarrow \\frac{1}{3}\\ln \\left|\\frac yx\\right|-\\frac{1}{6}\\ln \\left|\\frac yx+\\sqrt{3}\\right|-\\frac{1}{6}\\ln \\left|\\frac yx-\\sqrt{3}\\right|+\\frac{1}{2}\\ln \\left|3-\\frac {y^2}{x^2}\\right|=\\ln |Cx|\n\\\\ \\Rightarrow \\ln |\\frac yx|^{1\/3}-\\ln |\\frac yx+\\sqrt3|^{1\/6}-\\ln|\\frac yx-\\sqrt3|^{1\/6}+\\ln|3-\\frac {y^2}{x^2}|^{1\/2}=\\ln|Cx|\n\\\\ \\Rightarrow \\ln |\\dfrac{(\\frac yx)^{1\/3}(3-\\frac {y^2}{x^2})^{1\/2}}{(\\frac yx+\\sqrt3)^{1\/6}(\\frac yx-\\sqrt3)^{1\/6}}|=\\ln |Cx|"
"\\Rightarrow \\ln |\\dfrac{(\\frac yx)^{1\/3}(3-\\frac {y^2}{x^2})^{1\/2}}{(3-\\frac {y^2}{x^2})^{1\/6}}|=\\ln |Cx|\n\\\\ \\Rightarrow \\ln |{(\\frac yx)^{1\/3}(3-\\frac {y^2}{x^2})^{1\/3}}|=\\ln |Cx|\n\\\\ \\Rightarrow {(\\frac yx)^{1\/3}(3-\\frac {y^2}{x^2})^{1\/3}}= Cx\n\\\\ \\Rightarrow (\\frac yx)(3-\\frac {y^2}{x^2})=Kx^3 \\ \\ [\\because K=C^3]\n\\\\ \\Rightarrow 3yx^2-y^3=Kx^6"
Comments
Leave a comment