4. Find the general solution of the differential equation dy/dx + y cot x = 1, recalling that cot x = cos x / sin x
We have;
"\\displaystyle\n\\frac{dy}{dx}+y\\cot (x)=1\\Rightarrow \\frac{dy}{dx}+y\\frac{\\cos(x)}{\\sin(x)}=1"
The Integrating Factor (I.F) of the DE is;
"\\displaystyle\ne^{\\int\\frac{\\cos (x)}{\\sin(x)}\\ dx}=e^{\\ln|\\sin(x)|}=\\sin(x)"
Multiplying the I.F by the given DE yields;
"\\displaystyle\n\\left(\\frac{dy}{dx}+y\\frac{\\cos(x)}{\\sin(x)}\\right)\\sin(x)=1\\times\\sin(x)\\\\\n\\Rightarrow \\frac{d}{dx}(y\\sin(x))=\\sin(x)\\\\\n\\Rightarrow y\\sin(x)=\\int\\sin(x)\\ dx\\\\\n\\Rightarrow y\\sin(x)=-\\cos(x)+a,\\text{ where a is an arbitrary constant.}\\\\\n\\Rightarrow y=\\frac{a-\\cos(x)}{\\sin(x)}"
Comments
Leave a comment