5. If the function y = y(x) is such that x dy dx + 2y = x cos x, use the integrating-factor method to show that y = sin x + 2 cos x /x − 2 sin x/x^2 + c/x^2 , where c is an arbitrary constant
"\\begin{aligned}\n\n&\\text { Given } x \\frac{d y}{d x}+2 y=x \\cos x \\\\\n\n&\\Rightarrow\\left(x \\frac{d y}{d x}+2 y\\right) \\times \\frac{1}{x}=x \\cos x \\times \\frac{1}{x} \\\\\n\n&\\Rightarrow \\frac{d y}{d x}+\\frac{2 y}{x}=\\cos x \\\\\n\n&\\Rightarrow \\frac{d y}{d x}+\\left(\\frac{2}{x}\\right) y=\\cos x\n\n\\end{aligned}"
This is a first order linear differential equation of the form
"\\frac{d y}{d x}+P y=Q" Here, "P=\\frac{2}{x}\\ and\\ Q=\\cos x"
The integrating factor (I.F) of this differential equation is,
"\\begin{aligned}\n\n&\\text { I. F }=\\mathrm{e}^{\\int \\mathrm{Pdx}} \\\\\n\n&\\Rightarrow \\text { I.F }=\\mathrm{e}^{\\int \\frac{2}{\\mathrm{x}} \\mathrm{dx}} \\\\\n\n&\\Rightarrow \\text { I.F }=\\mathrm{e}^{2 \\int \\frac{1}{\\mathrm{x}} \\mathrm{dx}}\n\n\\end{aligned}\n\n\\\\\n\n\n\\begin{aligned}\n\n&\\text { We have } \\int \\frac{1}{\\mathrm{x}} \\mathrm{dx}=\\log \\mathrm{x}+\\mathrm{c} \\\\\n\n&\\Rightarrow \\text { I.F }=\\mathrm{e}^{2 \\log \\mathrm{x}}\n\n\\end{aligned}"
"\\begin{aligned}\n\n&\\Rightarrow \\mathrm{I} . \\mathrm{F}=\\mathrm{e}^{\\log \\mathrm{x}^{2}} \\\\\n\n{ } \\\\\n\n{\\left[\\because \\mathrm{m} \\log \\mathrm{a}=\\log \\mathrm{a}^{\\mathrm{m}}\\right]} \\\\\n\n{\\therefore \\mathrm{I} . \\mathrm{F}=\\mathrm{x}^{2}\\left[\\because \\mathrm{e}^{\\log \\mathrm{x}}=\\mathrm{x}\\right]}\n\n\\end{aligned}"
Hence, the solution of the differential equation is,
"\\begin{aligned}\n\ny(I . F)=& \\int(Q \\times I . F) d x+c \\\\\n\n\\Rightarrow y\\left(x^{2}\\right)=& \\int\\left(\\cos x \\times x^{2}\\right) d x+c \\\\\n\n\\Rightarrow y x^{2}=& \\int x^{2} \\cos x d x+c \\\\\n\n\\Rightarrow y x^{2}=& \\int\\left(x^{2}\\right) \\times(\\cos x) d x+c \\\\\n\n\\text { Recall } \\int f(x) g(x)=f(x)\\left[\\int g(x) d x\\right] \\\\\n\n&-\\int\\left[f^{\\prime}(x)\\left(\\int g(x) d x\\right)\\right] d x+c \\\\\n\n\\Rightarrow y x^{2}=& x^{2}\\left[\\int \\cos x d x\\right] \\\\\n\n&-\\int\\left[\\frac{d}{d x}\\left(x^{2}\\right)\\left(\\int \\cos x d x\\right)\\right] d x+c\n\n\\end{aligned}"
"\\begin{aligned}\n\\Rightarrow y x^{2} &=x^{2} \\sin x-2 \\int x \\sin x d x+c \\\\\n\\Rightarrow y x^{2} &=x^{2} \\sin x-2\\left\\{x\\left[\\int \\sin x d x\\right]\\right.\\\\\n&\\left.-\\int\\left[\\frac{d}{d x}(x)\\left(\\int \\sin x d x\\right)\\right] d x\\right\\}+c \\\\\n\\Rightarrow y x^{2} &=x^{2} \\sin x-2\\{x[-\\cos x]\\\\\n\\Rightarrow y x^{2} &=x^{2} \\sin x-2\\{-x \\cos x\\\\\n\\Rightarrow y x^{2} &=x^{2} \\sin x \\\\\n&-2\\{-x \\cos x+\\sin x\\}+c \\\\\n\\Rightarrow y x^{2} &=x^{2} \\sin x+2 x \\cos x \\\\\n & \\quad-2 \\sin x+c \\\\\n\n\\end{aligned}"
"\\mathrm{y}=\\sin \\mathrm{x}+\\frac{2}{\\mathrm{x}} \\cos \\mathrm{x}-\\frac{2}{\\mathrm{x}^{2}} \\sin \\mathrm{x}+\\frac{\\mathrm{c}}{\\mathrm{x}^{2}}"
Thus, the solution of the given differential equation is
"y=\\sin x+\\frac{2}{x} \\cos x-\\frac{2}{x^{2}} \\sin x+\\frac{c}{x^{2}}"
Comments
Leave a comment