(D² − 3DD + 2D²)z = e²x+³y +sin(x-2y)
The given question is;
"\\displaystyle\n(D^2 \u2212 3DD\\prime + 2(D\\prime)^2)z = e^{2x+3y}+\\sin(x-2y)"
Now put "D=m,\\text{and }D\\prime=1" then the auxiliary equation is;
"\\displaystyle\nm^2-3m+2=0\\Rightarrow(m-2)(m-1)=0\\Rightarrow m=1,2"
Hence, the complementary function is;
"\\displaystyle\nz_c=f_1(y+x)+f_2(y+2x)".
Next, for the particular integral ("\\displaystyle\ny_p" );
"\\displaystyle\nz_p=\\frac{1}{D^2 \u2212 3DD\\prime + 2(D\\prime)^2}(e^{2x+3y}+\\sin(x-2y))\\\\\n\\quad=\\frac{1}{D^2 \u2212 3DD\\prime + 2(D\\prime)^2}e^{2x+3y}+\\frac{1}{D^2 \u2212 3DD\\prime + 2(D\\prime)^2}\\sin(x-2y)\\\\\n\\quad=\\frac{1}{2^2-3(2)(3)+2(3)^2}e^{2x+3y}+\\frac{1}{-(1)^2 \u2212 3[-1\\times(-2)] + 2[-(-2)^2]}\\sin(x-2y)\\\\\n\\quad=\\frac{1}{4-18+18}e^{2x+3y}+\\left(\\frac{1}{-1-3[2]+2[-4]}\\sin(x-2y)\\right)\\\\\n\\quad=\\frac{1}{4}e^{2x+3y}+\\frac{1}{(-1-6-8)}\\sin(x-2y)\\\\\n\\quad=\\frac{1}{4}e^{2x+3y}+\\frac{1}{(-15)}\\sin(x-2y)\\\\\n\\quad=\\frac{1}{4}e^{2x+3y}-\\frac{1}{15}\\sin(x-2y)"
Thus the general solution is ; "\\displaystyle\nz=z_c+z_p=f_1(y+x)+f_2(y+2x)+\\frac{1}{4}e^{2x+3y}-\\frac{1}{15}\\sin(x-2y)"
Comments
Leave a comment