Find a particular solution of y''+y=sinx, using the method of undetermined coefficients
From "\\displaystyle\ny^{\\prime\\prime}+y=\\sin x", the auxiliary equation is;
"m^2+1=0\\\\\n\\Rightarrow m=\\pm i"
Thus, the complementary function is;
"\\displaystyle\ny_c=c_1\\cos x+c_2 \\sin x" where "c_1" and "c_2" are arbitrary constant.
Next, to obtain the particular integral using method of undetermined coefficients.
Let "\\displaystyle\ny_p=ax\\cos x+bx\\sin x", then
"\\displaystyle\ny_p^{\\prime\\prime}=2b\\cos x-2a\\sin x-ax\\cos x-bx\\cos x"
Substituting "y_p" and "y_p^{\\prime\\prime}" into the given DE yields;
"\\displaystyle\n(2b\\cos x-2a\\sin x-ax\\cos x-bx\\cos x)+(ax\\cos x+bx\\sin x)=\\sin x\\\\\n\\Rightarrow 2b\\cos x-2a\\sin x=\\sin x"
comparing yields;
"\\displaystyle\nb=0," and "\\displaystyle\na=-\\frac{1}{2}"
Thus, "\\displaystyle\ny_p=ax\\cos x+bx\\sin x=-\\frac{x\\cos x}{2}+0\\times x\\sin x=-\\frac{x\\cos x}{2}"
Hence, the general solution is;
"\\displaystyle\ny=y_c+y_p=c_1\\cos x+c_2 \\sin x-\\frac{x\\cos x}{2}"
Comments
Leave a comment