show that y= c1e^x +c2^2x is the general soloution of ydobledash -3ydash+2y=0
"\\begin{aligned} & y=c_{1} e^{x}+c_{2} e^{2 x} \\\\ & \\text { To verify the equation } \\\\ & y^{\\prime \\prime}-3 y^{\\prime}+2 y=0 \\\\ y^{\\prime}=\\frac{d y}{d x}=c_{1} e^{x}+2 c_{2} e^{2 x} \\\\ y^{\\prime \\prime}=\\frac{d^{2} y}{d x^{2}}=c_{1} e^{x}+4 c_{2} e^{2 x} \\\\ \\Rightarrow & c_{1} e^{x}+4 c_{2} e^{2 x}-3\\left(c_{1} e^{x}+2 c_{2} e^{2 x}\\right) \\\\ &+2\\left(c_{1} e^{x}+c_{2} e^{2 x}\\right) \\\\ \\Rightarrow & c_{1} e^{x}+4 c_{2} e^{2 x}-3 c_{1} e^{\\prime x}-6 c_{2} e^{2 x} \\\\ &+2 c_{1} e^{x}+2 c_{2} e^{2 x} \\\\ \\Rightarrow & 6 c_{2} e^{2 x}-6 c_{2} e^{2 x} \\\\ \\Rightarrow & 0 \\end{aligned}"
Comments
Leave a comment